Small-x physics with CMS at LHC

Magdalena Malek

on behalf of the CMS collaboration

University of Illinois at Chicago-CERN

12/05/2010

Many thanks to David d'Enterria and Forward PAG of CMS

Outline

- 1 Introduction
- ${f 2}$ Low-x QCD with CMS at the LHC
 - detector capabilities
 - p+p collisions
 - Pb+Pb collisions
- **3** Summary

- QPM
 static object composed of 3 valence guarantees
- QCD improved QPM
 - dynamic object with a very complicated structure

 contains fluctuations smaller than its own size
- = CG

HERA results:

- Probing parton distribution with DIS:
 - $\hookrightarrow x$: momentum fraction carried by parton $\hookrightarrow Q^2 = -q^2$: resolving power
- QPM
 - static object composed of 3 valence quarks
 - no interaction between constituents
- QCD improved QPM
- dynamic object with a very complicated structure
- = CGC
 - large lifetime of soft gluons
 probe becomes more and more crowded
 partons start overlapping and they recombine
- HERA results

- Probing parton distribution with DIS:
 - $\hookrightarrow x$: momentum fraction carried by parton $\hookrightarrow Q^2 = -q^2$: resolving power
- QPM
 - static object composed of 3 valence quarks
 - no interaction between constituents
- QCD improved QPM
 - dynamic object with a very complicated structure
 - contains fluctuations smaller than its own size
- CGC
 - probe becomes more and more crowded
 partons start overlapping and they recombine
- HFRA results
- F_2 strong rise at low- $x \sim$ sea quarks
- $\frac{1}{\partial \ln Q^2} \sim \text{gluons}$

- Probing parton distribution with DIS:
 - $\hookrightarrow x$: momentum fraction carried by parton
 - $\hookrightarrow Q^2 = -q^2$: resolving power

QPM

- static object composed of 3 valence quarks
 - no interaction between constituents
- QCD improved QPM
 - dynamic object with a very complicated structure
 - contains fluctuations smaller than its own size

CGC

- large lifetime of soft gluons
- probe becomes more and more crowded
- partons start overlapping and they recombine
- non-linear evolution
- HFRA results

- Probing parton distribution with DIS:
 - $\hookrightarrow x$: momentum fraction carried by parton $\hookrightarrow Q^2 = -q^2$: resolving power
- QPM
 - static object composed of 3 valence quarks
 - no interaction between constituents
- QCD improved QPM
 - dynamic object with a very complicated structure
 - contains fluctuations smaller than its own size
- **CGC**
 - large lifetime of soft gluons
 - probe becomes more and more crowded
 - partons start overlapping and they recombine
 - non-linear evolution
- HERA results:
 - F_2 strong rise at low- $x \sim$ sea quarks
 - $\frac{\partial \ln F_2}{\partial \ln O^2} \sim \text{gluons}$

- Probing parton distribution with DIS:
 - $\hookrightarrow x$: momentum fraction carried by parton
 - $\hookrightarrow Q^2 = -q^2$: resolving power

QPM

- static object composed of 3 valence quarks
 - no interaction between constituents
- QCD improved QPM
 - dynamic object with a very complicated structure
 - contains fluctuations smaller than its own size

CGC

- large lifetime of soft gluons
- probe becomes more and more crowded
- partons start overlapping and they recombine
- non-linear evolution
- HERA results:
 - F_2 strong rise at low- $x \sim \text{sea quarks}$
 - $\frac{\partial \ln F_2}{\partial \ln O^2} \sim \text{gluons}$

Parton (x, Q^2) evolution

- increasing Q^2 ($Q^2 > Q_s^2$): DGLAP \Rightarrow evolution towards the dilute system
- decreasing x ($\mathbb{Q}^2 < \mathbb{Q}_s^2$): BFKL \Rightarrow evolution towards the high density system
- linear evolution equation doesn't work at low-x:
 - non-linear g+g fusion
 - unitarity violation

Saturation criterion

- lacksquare number of partons per unit area $ho \sim rac{xG(x,Q^2)}{\pi R^2}$
- \blacksquare recombination cross-section $\sigma_{gg \to g} \sim \frac{\alpha_s}{Q^2}$
- recombination if $\rho\sigma_{gg\to g} \geq 1$ $(Q^2 \leq Q_s^2)$
- lacksquare saturation scale $Q_s^2 \sim rac{lpha_s x G(x,Q_s^2)}{\pi R^2}$
- effective field theory for high energy limit
- lacksquare gluons overlap for momenta $\sim Q_s$
- non-linear JIMWLK evolution equation

Low-x PDF experimentally

\blacksquare low-x = forward rapidity

$$x_2^{min} \sim \frac{p_T}{\sqrt{s}} \cdot e^{-y} = x_T \cdot e^{-y}$$

every 2 units of y: x_2^{min} decreases by ~ 10

Processes:

- Drell-Yan: $p(p_1)+p(p_2) \rightarrow l\bar{l}+X$
- prompt- γ : $p(p_1)+p(p_2)\rightarrow jet+\gamma+X$
- \blacksquare di(jets): $p(p_1)+p(p_2)\rightarrow jet_1+jet_2+X$
- heavy Q: $p(p_1)+p(p_2)\rightarrow Q+\overline{Q}+X$
- diffractive $Q\overline{Q}$ (γ p, γ A)

Low-x proton PDF

most of our current knowledge comes from F₂ scaling violation:

$$\frac{\partial F_2(x,Q^2)}{\partial \ln(Q^2)} \propto \alpha_s(Q^2) x g(x,Q^2)$$

- large uncertainties for $x < 10^{-2}$ at moderate Q² (<5 GeV²)
- LHC: p+p at 14 TeV
 - high \sqrt{s} \Rightarrow very small x for y <5, M<10 GeV: x \sim 10 $^{-6}$ -10 $^{-7}$ (70 times lower than p+p at RHIC)
 - lacksquare saturation momentum $Q_s \sim 2 \text{ GeV}$
 - very large perturbative cross section

Low-x proton PDF

most of our current knowledge comes from F₂ scaling violation:

$$\frac{\partial F_2(x,Q^2)}{\partial \ln(Q^2)} \propto \alpha_s(Q^2) x g(x,Q^2)$$

- large uncertainties for $x < 10^{-2}$ at moderate Q² (<5 GeV²)
- LHC: p+p at 14 TeV
 - high \sqrt{s} ⇒ very small x for y <5, M<10 GeV: x \sim 10 $^{-6}$ -10 $^{-7}$ (70 times lower than p+p at RHIC)
 - lacksquare saturation momentum $Q_s \sim 2$ GeV
 - very large perturbative cross section

Low-x nuclear PDF

- current data from nuclear F₂ and nuclear Drell-Yan (eA)
- DGLAP analysis: linear evolution + nuclear shadowing
 - shadowing: low-x gluon fusion
 - shadowing factor for PDFs:

$$R_g^A(x,Q^2) = \frac{f_g^A(x,Q^2)}{f_g(x,Q^2)}$$

- most data in non perturbative range (Q² <1-2 GeV²): large uncertainties
- nuclear $xG(x,Q^2)$ unknown for $x < 10^{-2}$
- LHC: Pb+Pb at 5.5 & p+Pb at 8.8 TeV:
 - lacksquare x 30-45 times lower than Au+Au, d+Au at RHIC
 - saturation momentum $Q_s \sim 3$ GeV
 - very large perturbative cross section

Low-x nuclear PDF

- current data from nuclear F₂ and nuclear Drell-Yan (eA)
- DGLAP analysis: linear evolution + nuclear shadowing
 - shadowing: low-x gluon fusion
 - shadowing factor for PDFs:

$$R_g^A(x,Q^2) = \frac{f_g^A(x,Q^2)}{f_g(x,Q^2)}$$

- most data in non perturbative range (Q² <1-2 GeV²): large uncertainties
- lacktriangleq nuclear $xG(x,Q^2)$ unknown for x <10 $^{-2}$
- LHC: Pb+Pb at 5.5 & p+Pb at 8.8 TeV:
 - lacksquare x 30-45 times lower than Au+Au, d+Au at RHIC
 - \blacksquare saturation momentum Q_s \sim 3 GeV
 - very large perturbative cross section

Low-x nuclear PDF

- current data from nuclear F₂ and nuclear Drell-Yan (eA)
- DGLAP analysis: linear evolution + nuclear shadowing
 - shadowing: low-x gluon fusion
 - shadowing factor for PDFs:

$$R_g^A(x,Q^2) = \frac{f_g^A(x,Q^2)}{f_g(x,Q^2)}$$

- most data in non perturbative range (Q² <1-2 GeV²): large uncertainties
- lacktriangleq nuclear $xG(x,Q^2)$ unknown for x $<10^{-2}$
- LHC: Pb+Pb at 5.5 & p+Pb at 8.8 TeV:
 - lacktriangledown x 30-45 times lower than Au+Au, d+Au at RHIC
 - \blacksquare saturation momentum Q_s \sim 3 GeV
 - very large perturbative cross section

CMS: dedicated to explore physics at the TeV scale

- prime goals: mechanism of electroweak symmetry breaking and provide evidence of physics beyond SM
- also SM measurements: QCD, B-physics, diffraction, top quark, and electroweak physics topics such as the W and Z boson
- Detector:
 - inner tracking system $(|\eta| < 2.5)$
 - **calorimeters** (electromagnetic: $|\eta| < 3$, hadronic: $|\eta| < 5$)
 - muon system ($|\eta|$ <2.4)
 - few forwards detectors (CASTOR: -6.6< η <-5.2 and ZDC: $|\eta|$ >8.3)

Ideally suited to study low- \boldsymbol{x} physics

Going forward: detectors

- HF
 - rapidity coverage: $2.9 < |\eta| < 5.2$
 - at 11.2 m from IP
 - steel absorbers and embedded radiation -hard quartz fibers for fast collection of Cherenkov light
 - segmentation in η et ϕ : 0.175 \times 0.175

- CASTOR
 - rapidity coverage: -6.6 < n < -5.2
 - at 14.3 m from IP
 - alternate tungsten absorbers and quartz plates
 - **segmentation** in ϕ : 16 sectors
 - 14 modules (2EM+12HAD)

ZDC

- rapidity coverage: $|\eta| > 8.4$
- at 140 m from IP
- tungsten/quartz
 Cherenkov
 calorimeter with
 separated EM and
 HAD sections
- detection of neutrals $(\gamma, \pi^0, \mathbf{n})$

 $\textbf{CMS} \Rightarrow \textbf{unprecedented calorimetric coverage in pseudo-rapidity}$

p+p collisions

p+p: forward jets

- Low-x gluon density in the proton is poorly known $(x = p_{parton}/p_{hadron})$
- Forward jet production in CMS calorimeters:

■ HF:
$$x \sim 10^{-4}$$

■ CASTOR: $x \sim 10^{-5}$

■ Forward jet cross-sections constrain low-x gluon PDFs

$$d\sigma(pp \rightarrow jet) = PDF(x_1, Q^2) \otimes PDF(x_2, Q^2) \otimes d\sigma(qg \rightarrow jet)$$

p+p: forward jets

- **Low-**x gluon density in the proton is poorly known $(x = p_{parton}/p_{hadron})$
- Forward jet production in CMS calorimeters:

■ HF: $x \sim 10^{-4}$

■ CASTOR: $x \sim 10^{-5}$

■ Forward jet cross-sections constrain low-x gluon PDFs

$$\mathsf{d}\sigma(\mathsf{pp}\to\mathsf{jet})= \textcolor{red}{\mathsf{PDF}}(\mathsf{x}_1,\,\mathsf{Q}^2)\otimes \textcolor{red}{\mathsf{PDF}}(\mathsf{x}_2,\,\mathsf{Q}^2)\otimes \mathsf{d}\sigma(\mathsf{qg}\to\mathsf{jet})$$

- Low-x gluon density in the proton is poorly known $(x = p_{parton}/p_{hadron})$
- Forward jet production in CMS calorimeters:

■ HF:
$$x \sim 10^{-4}$$
■ CASTOR: $x \sim 10^{-5}$

■ Forward jet cross-sections constrain low-x gluon PDFs

$$d\sigma(pp \rightarrow jet) = PDF(x_1, Q^2) \otimes PDF(x_2, Q^2) \otimes d\sigma(qg \rightarrow jet)$$

p+p: Mueller-Navelet dijets

- Mueller-Navelet dijets with large η separation very sensitive to low-x QCD evolution (testing ground for BFKL)
 - BFKL: extra radiation between the 2 jets will smear out back-to-back topology
 - enhanced radiation partially compensated by gluon saturation ?

■ Increased azimuthal decorrelation with increasing $\Delta \eta$ (w.r.t. DGLAP collinear-factorization)

p+p: Mueller-Navelet dijets

- Mueller-Navelet dijets with large η separation very sensitive to low-x QCD evolution (testing ground for BFKL)
 - BFKL: extra radiation between the 2 jets will smear out back-to-back topology
 - enhanced radiation partially compensated by gluon saturation?

■ Increased azimuthal decorrelation with increasing $\Delta \eta$ (w.r.t. DGLAP collinear-factorization)

p+p: Mueller-Navelet dijets

- Mueller-Navelet dijets with large η separation very sensitive to low-x QCD evolution (testing ground for BFKL)
 - BFKL: extra radiation between the 2 jets will smear out back-to-back topology
 - enhanced radiation partially compensated by gluon saturation ?

■ Increased azimuthal decorrelation with increasing $\Delta \eta$ (w.r.t. DGLAP collinear-factorization)

Dedicated HLT trigger!

p+p: First candidate for Mueller-Navelet dijets in 900 GeV data!

p+p: Forward energy flow: Motivation

- improve the understanding of the parton radiation in the initial state
- study the multiparton interactions
- implemented in Monte Carlo event generators: need parameters to be adjusted to describe the measurements
- the extrapolation to larger energies is very uncertain
- it probes underlying event in a new way

The energy dependance of multiple parton interactions is not well known yet!

p+p: Forward energy flow: Predictions

- comparison of two different tunes: Pythia-D6T (CTEQ6L1) and Pythia-Perugia (CTEQ5L)
- lacktriangle energy flow in central region at low \sqrt{s} does not change much with tunes
- significant difference observed in the large pseudorapidity region ($|\eta| > 2$)

Energy flow in the forward region \Rightarrow has never been measured at a hadron collider

p+p: Forward energy flow: First look on the real data !

Event selection

- min-bias trigger
 - Beam Pick-up Timing for the eXperiments (BPTX): provide the information on the bunch structure and timing of the incoming beam with the precision better than 0.2 ns
 - Beam Scintillator Counters (BSC): provide hit and coincidence rates
 - rejection of beam halo events
- rejection of non-IP events: require at least 10 tracks with 25% of the tracks to be high purity
- \blacksquare at least one primary vertex reconstructed with number of tracks > 3 with |z|< 15 cm (distance to the CMS IP) and impact parameter $d_0\leq$ 2 cm
- Energy flow ratio definition

$$R_{Eflow}^{\sqrt{s_1},\sqrt{s_2}} = \frac{\frac{1}{N_{\sqrt{s_1}}} \frac{\Delta E_{\sqrt{s_1}}}{\Delta \eta}}{\frac{1}{N_{\sqrt{s_2}}} \frac{\Delta E_{\sqrt{s_2}}}{\Delta \eta}}$$

where

$$\sqrt{s_1} = 2.36 \text{ or } 7 \text{ TeV}$$

$$\sqrt{s_2} = 0.9 \text{ TeV}$$

 $N_{\sqrt{s}}$: number of selected minimum bias events for given energy

 $\Delta E_{\sqrt{s}}$: energy deposited in a region in $\Delta \eta$ for a given energy (integrated over azimuthal angle)

p+p: Forward energy flow: Results !

results on the detector level, no systematics uncertainties included

- more energy deposited when increasing energy
- lacktriangle more energy deposited in the large η region
- conclusion on the quality of the description can't be made without the systematics uncertainties

results on the detector level, no systematics uncertainties included

- more energy deposited when increasing energy
- **more energy** deposited in the large η region
- conclusion on the quality of the description can't be made without the systematics uncertainties

p+p: Forward energy flow: Conclusions

- CMS is working very well
- First measurement of energy flow in the forward region was performed
- First results are very encouraging
- Input to Monte Carlo simulations
 - include the systematics
 - can be used for the MC tuning
 - can teach us more about small-x evolution and parton radiation

LHC opened a new phase space for small-x physics studies

Pb+Pb collisions

lacktriangle final hadron rapidity density \propto number of initially release partons at a given η

$$\frac{dN}{d^2bd\eta} \propto \frac{1}{\alpha_s(Q_s^2)}Q_s^2 \propto xG(x,Q_s^2) \cdot A^{1/3}$$

- reduced multiplicity predicted by saturation models: gluon recombination reduces incoming parton flux
- **saturation** driven predictions for LHC: $dN/d\eta(\eta=0)\sim 2000$ (8000 before RHIC results)

Pb+Pb: multiplicity with CMS

- day-1 measurement !
- method: hit counting in the pixel tracker $|\eta|$ < 2.5
- CMS Si pixel tracker:
 - 3 layers 53.3 cm long barrel layers (innermost barrel radius of 4.4 cm)
 - 2 end-cap disks
 - \blacksquare full ϕ
 - \blacksquare pixel size (z × r) = 100 × 150 μm
- resolution
 - impact parameter: \sim 100 μm
 - p_T: ~ 0.7 % for 1 GeV (η =0)

Pb+Pb: Photon beams at the LHC

- Weizsacker-Williams (EPA):
 - electromagnetic field (coherent action of Z=82 proton charges)
 - generated equivalent flux of photons
- characteristics of Ultra-Peripheral Collisions (UPC)
 - $b_{min} \sim 2R_A$: nuclei do not collide $\Rightarrow \gamma$ -induced reactions
 - $\sim \gamma$ -flux $\sim Z^2$: enhancement factor of 7000 is expected for Pb beam (if compared to electron or proton beam)
 - Max photon energy: $\omega_{max} \approx \gamma/R_A \sim 3$ (80) GeV for Au+Au RHIC (Pb+Pb LHC)
 - \blacksquare max center of mass energy for $\gamma+Pb$ collisions:
 - $\sqrt{s_{\gamma+Pb}} \approx$ 30 (900) GeV for Au+Au RHIC (Pb+Pb LHC)
 - LHC \sim 3-4 $\sqrt{s}_{\gamma+n}$ at HERA
 - coherence condition \Rightarrow very low γ virtuality: production of low transverse momenta particles (~ 30 MeV)

Pb+Pb: $Q\overline{Q}$ photoproduction in UPC

sensitive to the square of the gluon density in the nucleus

$$\frac{d\sigma_{\gamma p,A\to V_{p,A}}}{dt}=\frac{\alpha_s^2\Gamma_{ee}}{3\alpha M_V^5}16\pi^3[xG(x,Q^2)]^2$$
 with $Q^2=M_V^2/4$ and $x=M_V^2/W_{\gamma p,A}^2$

- x probed in γ +A \Rightarrow Υ +A process at LHC:
 - for y=0: $x \approx 2 \cdot 10^{-3}$
 - for y=2.5: $x \approx [x(y=0)] \cdot e^{-y} \approx 10^{-4}$
- available (x,Q²) regime to constraint the nuclear PDFs
- Unexplored (x,Q²) can be studied!

Pb+Pb: UPC γ Pb $\rightarrow \Upsilon$: cross section prediction

STARLIGHT Monte Carlo predictions: signal

Process	σ_{tot}	σ_{X_n}	$\sigma_{X_n X_n}$
${}$ Pb+Pb $\rightarrow \gamma$ +Pb \rightarrow J/ ψ +X	32 mb	8.7 mb	2.5 mb
$Pb+Pb \rightarrow \gamma+Pb \rightarrow \Upsilon(1S)+X$	173 μb	78 μb	25 μb

background: coherent production of lepton pairs in two-photon processes

Process	$\gamma\gamma \to e^+e^-$	$\gamma\gamma \to \mu^+\mu^-$
$\sigma(m_{inv}>1.5~GeV~)$	139 mb	45 mb
$\sigma(m_{inv}>$ 6 GeV)	2.8 mb	1.2 mb

 \sim 50 % of UPC interactions lead to the nuclear breakup with forward neutron emission (X_n)

Pb+Pb: Study from the simulation

■ signal to background ratio

$$\frac{N_{signal}}{N_{continuum}} = \frac{\sigma_{PbPb \to \gamma Pb \to \gamma} \times BR(\Upsilon \to l^+l^-)}{\sigma_{PbPb \to \gamma \gamma \to l^+l^-(m_{inv} = 6 - 12 GeV/c^2)}} \approx 0.35\%(0.15\%) for \mu^+\mu^-(e^+e^-)$$

full CMS simulation and reconstruction

Peak position: \sim 9.35 GeV Mass resolution: $\sim 150 \text{ MeV}$

Peak position: \sim 9.52 GeV Mass resolution: ~ 90 MeV

Excellent mass resolution \Rightarrow higher $b\bar{b}$ states (not simulated) can be separated

Pb+Pb: extracted yields

■ 1 year of Pb+Pb running (\sim 10⁶ s) with background subtracted

- N($\Upsilon \to e^+e^-$): $\sim 220 \pm 15\%$ (stat) $\pm 10\%$ (syst)
- $N(\Upsilon \rightarrow \mu^+\mu^-)$: $\sim 180 \pm 13\%$ (stat) $\pm 10\%$ (syst)

Large statistics for detailed studies of gluon PDF

Summary

- Non-linear QCD evolution and gluon saturation MUST be taken into account in the high energy limit
- First signs of non linear QCD dynamics in HERA (e+p) and RHIC (d+A, A+A)
- CMS allows to study high density QCD in p+p/Pb+Pb/p+Pb down to $x \sim 10^{-5}$ using forward detectors and perturbative processes
- CMS detector is working very well and taking a high quality data
- first analysis of p+p data were performed: forward jets and energy flow
- we are looking forward for more data to perform detailed studies of the jets in the forward region